skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kang, Yifan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Generative AI is generating much enthusiasm on potentially advancing biological design in computational biology. In this paper we take a somewhat contrarian view, arguing that a broader and deeper understanding of existing biological sequences is essential before undertaking the design of novel ones. We draw attention, for instance, to current protein function prediction methods which currently face significant limitations due to incomplete data and inherent challenges in defining and measuring function. We propose a “blue sky” vision centered on both comprehensive and precise annotation of existing protein and DNA sequences, aiming to develop a more complete and precise understanding of biological function. By contrasting recent studies that leverage generative AI for biological design with the pressing need for enhanced data annotation, we underscore the importance of prioritizing robust predictive models over premature generative efforts. We advocate for a strategic shift toward thorough sequence annotation and predictive understanding, laying a solid foundation for future advances in biological design. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026